

Indian Journal of Extension Education

Vol. 61, No. 4 (October–December), 2025, (201-207)

ISSN 0537-1996 (Print) ISSN 2454-552X (Online)

Perceived Constraints among Dairy Farmers in Eastern India Using Logistic Regression

Bhartendu Yadav¹, Abhilash Singh Maurya^{1*}, Ajay Kumar Srivastava², Bhavesh³ and Joginder Singh Malik⁴

HIGHLIGHTS

- The logistic regression model was well-fit, explaining about 32.6 percent of variance in constraints faced.
- Targeted policy interventions like insurance reforms & extension outreach, are needed to promote inclusive dairy sector growth.
- Rural transformation and inclusive development can enhance income security, productivity, and livelihood resilience.

ARTICLE INFO ABSTRACT

Keywords: Constraints, Farmers, Dairy, Logistic Regression, Rural development, Agriculture.

https://doi.org/10.48165/IJEE.2025.614RN03

Citation: Yadav, B., Maurya, A. S., Srivastava, A. K., Bhavesh, & Malik, J.S. (2025). Perceived constraints among dairy farmers in Eastern India using logistic regression. *Indian Journal of Extension Education*, 61(4), 201-207. https://doi.org/10.48165/IJEE.2025.614RN03

The dairy sector plays a crucial role in sustaining rural livelihoods, especially among the small and marginal farmers, by providing food security, nutrition, and a regular source of income. However, these farmers often face a variety of structural and operational constraints that hinder their growth and economic development. This study investigated the key perceived constraints experienced by selected 270 Marginal-Small (MS) dairy farmers of Eastern Uttar Pradesh in the year 2024, selected through multistage stratified purposive-cum-random sampling, using logistic regression analysis. Among these, the high insurance charges emerged as the most severe factor, increasing the odds of constraint by 17 times. The model was well-fitted as indicated by a Hosmer and Lemeshow test value of 0.201 and Nagelkerke R² of 0.326, explaining about 32.6 per cent of variance in constraints faced. The study concludes that targeted policy reforms are needed to address critical bottlenecks in the dairy sector. Overall, the findings reinforce the importance of a need-based and evidence-driven approach for inclusive rural development through dairy enterprise support.

INTRODUCTION

The rural livelihood is dependent on the integration of the crops as well as livestock rearing. To a significant extent it acts as a source of food and nutritional security (Mondal et al., 2022) along with being a promising income source to millions (Pal et al., 2017; Bahubalendra et al., 2025). As India is the largest milk producer (PIB, 2025), and have a significant contribution in agricultural GDP (Gross Domestic Product) and employment, particularly in the rural area. Due to lack of technical knowledge and inadequate literacy

(Ali et al., 2024) to cope up with growing societies and challenges, these enterprises are promising a continuous source of income (Bharne et al., 2025) and thereby facilitating the daily need and hence the rural economy. The rural economy, particularly the marginal-small (MS) category, owning less agricultural land are largely dependent on the animal interventions (Jatav, 2024c). Dairy farmers are the backbone of the dairy sector, fulfilling their own needs and the other non-farming population (Lepcha et al., 2023). Day by day shrinkage of the agricultural land, due to rapid urbanization and fragmentation in households, also pushes families

Received 05-08-2025; Accepted 28-08-2025

¹Assistant Professor, Department of Agricultural Economics and Extension, Lovely Professional University, Phagwara-144411, Punjab, India

²Teaching Associate, Chandra Shekhar Azad University of Agriculture & Technology, Kanpur-208002, Uttar Pradesh, India

³Ph.D. Scholar, Western Sydney University, Australia

⁴Professor, Department of Agricultural Extension Education, CCS Haryana Agricultural University, Hisar-125004, Haryana, India

^{*}Corresponding author email id: 483agabhilash@gmail.com

without any rigid income sources towards the dairy sectors (Maurya et al., 2023). And it is feasible also, since growing population needs nutrition and food (Mishra et al., 2025); which will require growth in the sector too. So, it is a promising sector in the future. Despite such a close tie with the dairy enterprise, the MS farmers face several disadvantages that restrict their economic growth in context of personal and social progress (Singh et al., 2024).

The prominent constraints faced by the MS dairy farmers are continuously suppressing them in income and growth point of view (Sahu et al., 2022). Some of the constraints are, inadequate dry fodder in off season, inadequate knowledge about balance feeding, high cost of concentrates, zero knowledge of latest technologies (Chandran & Podikunju, 2020), unavailability of HV bulls, lack of assistance/trainings from Krishi Vigyan Kendra (Maurya et al., 2024), high insurance charges, excessive paper work for credit, loss/ death, infertility, lack of trained medical supervision (Patil et al., 2024), lack of proper marketing facilities (Das et al., 2014). To improve the profitability of dairy husbandry, especially in tribal communities, cultivation of fodder shrubs and trees on wastelands, and developing degraded lands (Singh et al., 2017). There are many more unrecognizable constraints that are unable to reach the proper solutions (Sahoo et al., 2022). These are suppressing the thoughts of other entrepreneurs also, if they are looking to be entering into the field. All of these are due to a lag between the policies intents and their field level implementation. Several schemes are continuously announced by the agencies promising the overall growth of individuals as well as the economy as a whole (Mandi et al., 2022). Institutional support systems are lacking in their reach at the grassroots level (Derville et al., 2023). Removing all these hurdles can push the potential of the enterprise and help in the overall growth. Removing these barriers can unlock the growth potential of small dairy farmers, enhance their livelihoods and contribute to inclusive rural development (Sahu et al., 2021). It also has the potential to generate employment, reduce vulnerability, and empower women in rural households (Acharya et al., 2022).

METHODOLOGY

The analysis is confined to the constraint variables of the marginal and small dairy farmers in eastern India particularly in Sant Kabir Nagar district of Uttar Pradesh in the year 2024. Multistage stratified purposive-cum-random sampling was adopted for the selection of districts, blocks, and villages. The study incorporates a quantitative approach in which the information is collected using a questionnaire in survey. Singarimbun study (Singarimbun & Effendi, 1995) was used as a reference. A sample size of 270 dairy farmers was selected using the Slovin formula (Asenahabi & Ikoha, 2023) from the population. At the first step, the reliability and dependability of the information collected with respondents were checked, then the identified variables of constraints with the MS dairy farmers were investigated by logistic regression using the SPSS software. LR is used to examine the relationship between the dependent (Pull back of the dairy farmers) and independent variables (constraints). The logit of dependent variable (Y) is predicted with the selected independent variable (X).

Logit = natural logarithm (ln) of odds of Y

Odds = ratio of probability of constraints to no constraints

Odds can be mentioned as probability of Y happening (Pi) and the probability of Y not happening (1 - Pi).

P_i = Probability of present constraints

(1-P₂) = Probability of absent constraints.

Here, the dependent variable is binary in nature i.e., only two possible values; either Yes or No; and the covariates on the other hand, are used to refer to a group of independent factors.

$$\begin{split} &\textit{Equation} - \\ & & \log it \; (Y) = \ln \frac{Pi}{(1 \text{-Pi})} \qquad \qquad \dots \; \text{eq} \; (1) \\ & = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_3 X_3 + \beta_6 X_6 + \beta_7 X_7 + \beta_8 X_8 + \beta_9 X_9 + \beta_{10} X_{10} + \beta_{11} X_{11} + \mu \; \dots \; \text{eq} \; (2) \\ & \text{Where,} \\ & P_i = (X_1 = x_1, \; X_2 = x_2, \; X_3 = x_3, \; \dots \dots X_{11} = x_{11}) \end{split}$$

$$=\frac{e^{\alpha}+\beta_{1}X_{1}+\beta_{2}X_{2}+\beta_{3}X_{3}+\beta_{4}X_{4}+\beta_{5}X_{5}+\beta_{6}X_{6}+\beta_{7}X_{7}+\beta_{8}X_{8}+\beta_{9}X_{9}+\beta_{10}X_{10}+\beta_{11}X_{11}}{1+e^{\alpha}+\beta_{1}X_{1}+\beta_{7}X_{2}+\beta_{7}X_{3}+\beta_{7}X_{4}+\beta_{7}X_{5}+\beta_{7}X_{6}+\beta_{7}X_{7}+\beta_{8}X_{8}+\beta_{9}X_{9}+\beta_{10}X_{10}+\beta_{11}X_{11}}$$

Y= categorical variable (Pull back of the dairy farmers), X= categorical or continuous variable (Constraints faced by dairy farmers), $\alpha=$ intercept, $\beta_i=$ regression coefficient, $\mu=$ unexplained error term

The variable descriptions used in the study are mentioned in Table 1.

RESULTS

District Sant Kabir Nagar holds most of the marginal and small (MS) farmers, as is likely to most of the other Indian states. Some of the selected respondents fall under the landless category, because of which they rely on allied agricultural practices, of which dairy practice is the most prominent one. Dairy farming ensures daily income and covers nutritional lacunae. But their adoption of this enterprise does not match the growth in relation. It is due to certain constraints faced by them in daily practices.

Table 1. Description of the variables selected for the study

Variables	Description	Units
$\overline{P_i}$	Constraints	1 = Constraint exists
		0 = No Constraint
α	Constant Intercept	
$\beta_{_{I}}$ to $\beta_{_{I0}}$	Coeff. of Predictor variables	
$\boldsymbol{\beta}_{_{I}}$	Inadequate dry fodder in off off-	A = Agree, D = Disagree
	season	
$\beta_{_2}$	Inadequate knowledge about	A = Agree, D = Disagree
	balanced feeding	
$eta_{_{4}}$	High cost of concentrates	A = Agree, D = Disagree
$\beta_{_4}$	Zero knowledge of the latest	A = Agree, D = Disagree
	Technologies	
β_{5}	Unavailability of HV Bulls	A = Agree, D = Disagree
$\beta_{_6}$	Lack of assistance/training from	A = Agree, D = Disagree
	KVKs	
β_{7}	High Insurance Charges	A = Agree, D = Disagree
$oldsymbol{eta}_{_{7}} \ oldsymbol{eta}_{_{8}} \ oldsymbol{eta}_{_{9}}$	Excessive Paperwork for Credit	A = Agree, D = Disagree
$\beta_{_{9}}$	Loss/Death	A = Agree, D = Disagree
$\beta_{{}_{I0}}$	Infertility	A = Agree, D = Disagree
$oldsymbol{eta}_{II}$	Lack of trained medical	A = Agree, D = Disagree
	supervision	
μ	Error term affecting the depender	nt variable

Some of the constraints faced by the dairy farmers include, Inadequate dry fodder in off season, Inadequate knowledge about balance feeding, High cost of concentrates, Zero knowledge of latest Technologies, Unavailability of hybrid variety Bulls, Lack of assistance/trainings from KVKs, High Insurance Charges, Excessive Paper Work for Credit, Loss/Death, Infertility, Lack of trained Medical Supervision. These problems resist the economic progress, yields and the morality of the dairy farmers. All of the abovementioned issues studied are being grouped into two categories: A = Agree & D = Disagree.

Reliability and dependability test

To evaluate the dependability and consistency of the measurements scores derived from the surveys, this reliability was conducted. It is one of an appropriate statistical tool used in social analysis. The outcome of this tool is depending upon the consistencies between administrations and their effectiveness in what is intended to measure. This Cronbach's alpha test measures consistency of the selected parameters in the questionnaire or scale (Cronbach, 1951). The analysis is based on the values, which ranges from 0 to 1, indicating greater reliability while moving towards 1. In the results the Cronbach's alpha value is 0.620 and the scale is analyzed on the basis of the results obtained.

Table 2. Measure of internal consistency and comparison of means of the variables

Reliability Test		Hotelling's T-squared Test		
Cronbach's alpha	0.620	Hotelling's T-squared	11400.896	
(Raw)				
Cronbach's alpha	0.638	F	1115.002	
(Standardized)				
Variables	12	df_1	11	
		df,	270	
		Significance	0.000	

The differences between the means of any of the groups can be analyzed using the Hotelling's T-squared Test (Table 2). It employs a multivariate analysis, considering more than two variables in one go. Therefore, the dependent variables are considered for this multivariate analysis. The constraints of the dairy farmers are taken into account for it, and those were divided into two sections; one who faced some of the constraints (denoted as 1), while antagonistic to it, who didn't have any issues (denoted as 0). The presumed answers initially were that, there will be no significant difference between the means of the groups having all the dependent variables. Whereas, the alternative hypothesis was taken that, there is a significant difference between means of both the groups.

Factors affecting the dairy farmers

The factors which are affecting the dairy farmers' economic conditions are analyzed by the logistical regression. The factors are

believed to have the significant effect on their socio-economic conditions and are pilling factors against the economic developments and progress. The considered factors include: Inadequate dry fodder in off season, Inadequate knowledge about balance feeding, High cost of concentrates, Zero knowledge of latest Technologies, Unavailability of HV Bulls, Lack of assistance/trainings from KVKs, High Insurance Charges, Excessive Paper Work for Credit, Loss/Death, Infertility, Lack of trained Medical Supervision.

The considered factors are then categorized into two divisions, based on the dependent variables. The variable is considered as 1, if is the affecting variable to the farmers and if not, it is denoted by 0. All the categories of the aforementioned constraints are presented in Table 3; which shows that the model predicted accurately, the farmers categories.

Table 3. Problem classification matrix

Observed	Predicted				
	Overall faced constraints		Percentage corrections		
	No constraints	Constraints			
Overall faced constraints					
No constraints	129	28	82.20		
Constraints	63	60	48.78		
Overall percentage	-	-	67.52		

It reveals that 129 out of 157 dairy farmers were those who do not faced any constraints and 60 out of 123 were those who were encountered with the constraints.

Logistic regression (LR)

The suitability of the factors that were responsible for the pullback of the dairy farmers was checked using Logistic Regression. The factors such as, Inadequate dry fodder in off season, Inadequate knowledge about balance feeding, High cost of concentrates, zero knowledge of latest Technologies, Unavailability of HV Bulls, Lack of assistance/trainings from KVKs, High Insurance Charges, Excessive Paper Work for Credit, Loss/Death, Infertility, Lack of trained Medical Supervision are deployed in this LR model. The usefulness of the test model is understood by the high value of the Likelihood ratio, i.e., 472.355 (> 11). In the same pattern, the R-square value (Nagelkerke R-square) of 0.326 reveals that all the 11 factors collectively explain 32.6 per cent of the variance in the constraints confronted by the dairy farmers. Similarly, when the fitness of the LR model is studied by deploying the Hosmer & Lemeshow Test, it is found that the LR model is appropriate and best-fitted, supported and explained by the p-value of 0.201. From Table 4, we can depict the LR model as-

logit (Y) = $-2.499 - 0.301 X_1 + X_2 + 0.305 X_3 + 1.654 X_4 + 0.209 X_5 + 1.229 X_6 + 2.779 X_7 + 0.650 X_8 + 1.249 X_9 + 0.438 X_{10} + 1.130 X_{11}$... eq (3) The above logit equation will be used to estimate the predicted value of the overall challenges faced by new farmers:

Predicted logit (Y) =
$$\frac{1 + e^{-} (-2.499 - 0.301 X_1 + X_2 + 0.305X_3 + 1.654X_4 + 0.209X_5 + 1.229X_6 + 2.779X_7 + 0.650X_8 + 1.249X_9 + 0.438X_{10} + 1.130X_{11})}{1 + e^{-} (-2.499 - 0.301 X_1 + X_2 + 0.305X_3 + 1.654X_4 + 0.209X_5 + 1.229X_6 + 2.779X_7 + 0.650X_8 + 1.249X_9 + 0.438X_{10} + 1.130X_{11})}$$

Table 4. Results from Logistic Regression

Variables	Coeffi-	p-	Odd
	cient	value	ratio
Inadequate dry fodder in off season	-0.301	0.310	0.633
Inadequate knowledge about balance	-1.000	0.375	0.386
feeding			
High cost of concentrates	0.305	0.526	1.385
Zero knowledge of latest Technologies	1.654	0.030	5.128
Unavailability of HV Bulls	0.209	0.001	0.137
Lack of assistance/trainings from KVKs	1.229	0.009	3.214
High Insurance Charges	2.779	0.000	17.009
Excessive Paper Work for Credit	0.650	0.256	2.009
Loss/Death	1.249	0.050	3.449
Infertility	0.438	0.329	1.584
Lack of trained Medical Supervision	1.130	0.000	3.013
Constant	-2.499	0.000	0.079
-2 log likelihood	472.355	-	-
Omnibus test of model coefficients	77.342	-	-
Cox & Snell R Square	0.167	-	-
Nagelkerke R Square	0.326	-	-
Hosmer and Lemeshow Test	0.201	-	-

Inadequate dry fodder in off off-season

The variable X₁, which focuses on the constraint of inadequate dry fodder in off-season, has a negative coefficient value i.e., -0.301. The results show a p-value of 0.310 (non-significant) and an odds ratio of 0.633. Although the odds ratio suggests a decreased likelihood of constraint due to this factor, the result is statistically insignificant. This implies that farmers facing fodder scarcity in the off-season are not significantly more constrained than others, possibly due to adaptation strategies like crop residue usage or fodder banks. This result is not statistically significant, which means this problem is not strongly related to whether a farmer is facing serious constraints overall. Farmers may have adapted by using crop residues or purchasing fodder during shortages. Therefore, they may not consider it a major hurdle.

Inadequate knowledge about balanced feeding

The Coefficient of the variable X_2 with its focus on the lack of proper knowledge on balanced feeding, has a Coefficient of -1.000, P-value: 0.375 (Not significant), and Odds Ratio of 0.386. The outcome reveals that there is a reduced probability of farmers who do not know how to feed the chickens efficiently reporting overall constraints; nevertheless, the outcome is not significant. It can be because of the low awareness itself, perhaps farmers do not regard this as a constraint because of knowledge gaps. The value of the odds ratio is less than one, indicating that the individuals who are not aware of the knowledge of balanced feeding practices will fail to appreciate its significance and therefore fail to note it as an issue. Not all farmers have been trained in the management of the feed, and thus they may not even be aware that this is a problem to their milk yield.

High cost of concentrates

The result of the variable X_3 , which concentrates on the high cost of concentrates is a positive coefficient number of 0.305, P

value number 0.526 (significant) and odds ratio of 1.385. Nevertheless, although the odds ratio indicated a more probable occurrence of constraints because of high concentrate prices, the impact is not notable in a significant way. It can mean that cost will be a factor but it does not equally restrict all smallholders. It suggests that there could be more constraints based on high-cost feed but the implication is not profound. Some may opt to use less or switch to cheap methods and this will not have direct effect on constraints immediately.

Zero knowledge of the latest technologies

The results of this factor are each of the coefficient that is 1.654 and significant p-value (0.03) and an odds ratio of 5.128. It is a very important limitation. The farmers who do not know about the modern technologies have five times bigger chances of having severe limitations. This indicates the digital and technical gap in the productive and quality practices and management in dairy farming. Without any knowledge of modern tool, tools, practices in the dairy farm, farmers stand five times more likely to experience major problems.

Unavailability of HV bulls

The consequences of the constraints are: Coefficient = 0.209, a highly significant p-value = 0.001, and 0.137 as the odds ratio. Although the relationship is statistically significant, the value of the odds ratio that is less than one implies the existence of a counterintuitive relationship. This could be a subject of additional research - possibly the variable coding was flipped, or the local practices counteract the effect of this limitation. Although the results are statistically significant, the odds ratio is very small, and it may be due to improper interpretation or coding error.

Lack of assistance/training from KVKs

This variable X_6 which is concerned with the absence of institutional back-ups in the form of Krishi Vigyan Kendras, has a Coefficient of 1.229, p-value: 0.009 (Significant), and Odds Ratio of 3.214. The likelihood of untrained farmers reporting some constraints is 3.2 times that of the trained ones, demonstrating the direct necessity of conducting capacity building and extension revisions. Farmers who do not get aid and training from Krishi Vigyan Kendras have a risk of facing issues more than three times that of others.

High Insurance Charges

This variable X_{7} , which focus on the constraint of high insurance charges, has Coefficient of 2.779, p-value: 0.000 (Highly Significant) and Odds Ratio of 17.009. This is the strongest constraint. Farmers perceiving insurance premiums as high are 17 times more likely to experience significant constraints. The current structure of livestock insurance is clearly unaffordable or inaccessible for smallholders, requiring immediate policy revision. Farmers who face high insurance premiums are more likely to face constraints.

Excessive paper work for credit

The present variable X_8 , holds the obtained results of coefficient (0.650), non-significant p-value of 0.256 and odds ratio

of 2.009. Although not statistically significant, the odds ratio indicates a tendency toward higher constraint for farmers facing cumbersome credit formalities. This suggests that institutional bottlenecks still exist, but variability across banks or regions may dilute the statistical effect. X_8 variable is not statistically significant, but still shows a trend toward increased constraints due to complicated loan processes. Small farmers may find formal banking paperwork difficult or time-consuming, leading to delays or denial of credit.

Loss/death

The variable X_9 , has the coefficient of 1.249, p-value (0.050) and odds ratio of 3.449 in the analysis. This factor is on the edge of statistical significance and shows a strong practical effect. Farmers reporting animal loss are 3.4 times more likely to face compounded constraints, revealing gaps in veterinary care, insurance coverage, and risk management. Just at the threshold of significance in this factor farmers who experienced animal death are over three times more likely to face other challenges.

Infertility

This factor has coefficient of 0.438, a significant p-value (0.329), and odds ratio of 1.584. Despite an increased odds ratio, infertility does not show a significant impact in the model. Still, reproductive health issues remain critical at the field level, and may be under-reported or conflated with other problems. While infertility does affect dairy operations, its impact here isn't strong statistically. Farmers might accept delayed pregnancies as normal or lack awareness about fertility treatments.

Lack of trained medical supervision

This factor has results of coefficient of 1.130, highly significant p-value (0.000) and odds ratio of 3.013. This is a major constraint. Farmers without access to trained veterinary personnel are three times more likely to face difficulties. This supports arguments for strengthening doorstep veterinary care and para-vet outreach in remote areas.

DISCUSSION

While addressing the issues in the dairy enterprises, it was needed to explore and analysed the key constraints that were hindering the growth of small and marginal dairy farmers (Gupta et al., 2020). As per the results, there was a significant difference between the means of both the group variables, because 0.000 < 0.05 in the significance calculations in the measurement of internal consistency and comparison of means of the variables. The factors which were affecting the dairy farmers economic conditions were analyzed by the logistical regression and it was found that the model was predicting the overall accuracy percentage of 67.52 per cent. The factors such as, Inadequate dry fodder in off season, Inadequate knowledge about balance feeding, High cost of concentrates, zero knowledge of latest Technologies (Kumar et al., 2021), Unavailability of HV (Hybrid Variety) Bulls, Lack of assistance/ trainings from KVKs, High Insurance Charges, Excessive Paper Work for Credit, Loss/Death, Infertility (Adhikari et al., 2020), Lack of trained Medical Supervision (Nagrale, 2015) were deployed in this LR model. The usefulness of the test model was understood by the high value of the Likelihood ratio. The R square value showed that all the 11 factors collectively explained the variance in the constraints confronted by the dairy farmers. The LR model was appropriate and best-fitted, supported and explained by the pvalues. The absence of a significant difference between the predicted and observed results indicates that the regression model is suitable for further analysis. Among the factors studied, it was revealed that the few factors viz., dry fodder availability in off-season, inadequate knowledge of balance feeding, high cost of concentrate, excessive paperwork for credit, and infertility, were least affecting the MS dairy farmers (Dhinds et al., 2014). Major concerns were technology aids in the enhancement of productivity, health monitoring and cutting down on expenses. In its absence, small farmers were not be able to get out of their old ways of doing things. Similarly, Lack of good breeding bulls was found added to problems. At the field level it was seen that lack of good access to quality semen or bulls was a factor that constraints productivity. For trainings, Farmers cannot develop better unless they are exposed to new ideas, practices and methods of doing things. So, KVKs were found the main source of farmer education (Kholia & Bhardwai, 2024). Expensive livestock insurance has always been a burden to the farmers. Many small farmers found avoiding it, leaving them vulnerable to loss from death or disease. In the same way the loss of even one dairy animal was seen as directly reducing the income and increasing emotional and financial stresses (Saravanan et al., 2021). Lastly, the farmers who were not having access to trained veterinary help were three times more constrained. Lack of timely treatment caused worsening health issues in animals, reducing productivity and increasing mortality (Singh et al., 2017).

CONCLUSION

The present study aimed to identify key constraints that hinder the progress of small and marginal dairy farmers, using logistic regression analysis. The findings provide insights into the severity and significance of various challenges in the dairy sector, which directly impact profitability and sustainability of rural livelihoods. Among the numerous challenges studied, five factors emerged as statistically significant and practically crucial. These constraints increase the likelihood of farmers facing multiple hardships, thus creating a cycle of low income, productivity, and poor resilience to shocks. High insurance charges, in particular, showed the strongest influence, suggesting an urgent need to restructure livestock insurance schemes to be more affordable and accessible. From a policy perspective, these results emphasize the importance of farmer education, veterinary infrastructure, accessible credit, technology diffusion, and affordable insurance products. By addressing the challenges, the dairy sector can be a powerful vehicle for inclusive rural development in India.

DECLARATIONS

Ethics approval and informed consent: Informed consent was sought from the respondents of the study and their organizations during the course of the research.

Conflict of interest: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The authors declare that during the preparation of this work, thoroughly reviewed, revised, and edited the content as needed. The authors take full responsibility for the final content of this publication.

Publisher's note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product/ process or technology that may be evaluated in this article, or a claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

REFERENCES

- Acharya, K. K., Malhotra, R., Sendhil, R., Mohanty, T. K., & Sahoo, B. (2022). Adoption of Sustainable dairy management practices among peri-urban dairy farmers in Odisha. *Indian Journal of Extension Education*, 58(3), 120-125. https://doi.org/10.48165/
- Adhikari, B., Chauhan, A., Bhardwaj, N., & Kameswari, V. (2020). Constraints faced by dairy farmers in hill region of Uttarakhand. *Indian Journal of Dairy Science*, 73(5). https://epubs.icar.org.in/index.php/IJDS/article/view/101128
- Ali, W., Garai, S., Maiti, S., Lepcha, C. Y., Meena, D. C., & Roy, S. (2024). Attitude and knowledge of belahi cattle rearers for dairy farming practices in shivalik foothill. *Indian Journal of Extension Education*, 60(4), 131-135. https://doi.org/10.48165/IJEE.2024. 604RN2
- Asenahabi, B. M., & Ikoha, P. A. (2023). Scientific research sample size determination. *The International Journal of Science & Technoledge*, 11(7). https://doi.org/10.24940/theijst/2023/v11/i7/ST2307-008
- Bahubalendra, S., Mishra, B., Jayasingh, D. K., & Anand, A. (2025). Barriers hindering tribal farm women's access to agri-allied information. *Indian Journal of Extension Education*, 61(3), 118-122. https://doi.org/10.48165/IJEE.2025.613RN02
- Bharne, S., Yadav, P., & Jatav, S. S. (2025). Effect of crop insurance and employment support on agricultural households' well-being: evidence from India. *Indian Journal of Extension Education*, 61(1), 66-72. https://doi.org/10.48165/IJEE.2025.61112
- Bhilavekar, D., Kale, N. M., & Satapathy, B. (2025). Agricultural and livelihood development of tribal communities in Melghat: challenges and recommendations. *Asian Journal of Agricultural Extension, Economics & Sociology*, 43(1), 57–62. https://doi.org/10.9734/ajaees/2025/v43i12672
- Chandran, V., & Podikunju, B. (2020). Constraints experienced by homestead vegetable growers in Kollam District. *Indian Journal* of Extension Education, 57(1), 32-37. https://doi.org/10.48165/
- Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. *Psychometrika*, 16(3), 297–334. https://doi.org/10.1007/BF02310555
- Das, L., Nain, M. S., Singh, R., & Burman, R. R. (2014). Constraints in marketing of fruits as perceived by the fruit growers and NERAMAC in Assam. *Journal of Community Mobilization and* Sustainable Development, 9(2), 114-117.
- Derville, M., Dorin, B., Jenin, L., Raboisson, D., & Aubron, C. (2023). Inclusiveness of the Indian dairy sector: An institutional approach. *Journal of Economic Issues*, 57(3), 994-1017.

- Dhinds, S. S., Nanda. R., & Kumar. B. (2014). Problems and constraints of dairy farming in Fatehgarh Sahib District of Punjab. *Progressive Research*, 9(1), 250-252.
- Gupta, S. K., Gorai, S., & Nain, M. S. (2020). Methodologies for constraints analysis, *Journal of Extension Systems*, 36(2), 22-27. http://doi.org/10.48165/JES.2020.36205
- Jatav, S. S. (2024). Livelihood diversification and rural household economic security in central and Bundelkhand regions of Uttar Pradesh, India. *Indian Journal of Extension Education*, 60(3), 7–11. https://doi.org/10.48165/IJEE.2024.60302
- Kholiya, M., & Bhardwaj, N. (2024). Constraints faced by dairy farm women in managing their dairy enterprise in Uttarakhand. International Journal of Agriculture Extension and Social Development, 7(8), 38-40. doi: https://doi.org/10.33545/ 26180723.2024.v7.i8a.906
- Kumar, J., Kumar, N., Baskaur, Kumar, R., & Kumar, V. (2021). Constraints faced by dairy owners in adoption of marketing and scientific dairy practices in Haryana. *Economic Affairs*, 66(4): 569-575. doi: 10.46852/0424-2513.4.2021.7
- Lepcha, C. Y., Asif Mohammad, & Waris Ali. (2023). Analyzing the feedback from women dairy farmers in the east district of Sikkim. *Indian Journal of Extension Education*, 59(2), 138-141. https://doi.org/10.48165/
- Mandi, K., Chakravarty, R., Ponnusamy, K., Kadian, K. S., Dixit, A. K., Singh, M., & Misra, A. K. (2022). Impact of Jharkhand state cooperative milk producers' federation on socioeconomic status of dairy farmers. *Indian Journal of Extension Education*, 58(2), 47-52. https://doi.org/10.48165/
- Maurya, A. S., Malik, J. S., Mishra, A., Shivam., & Nimbrayan, P. K. (2023). Perception of farm households on the impact of migration of rural youth. *Indian Journal of Economics and Development*, 19(2), 486-490. https://doi.org/10.35716/IJED-23021
- Maurya, A. S., Mishra, A., Malik, Bhavesh, J. S., & Niwas, R. (2024).
 Training status and adoption of marketing channels by members of self-help Group. *Indian Journal of Extension Education*, 60(3), 60-64. https://doi.org/10.48165/IJEE.2024.60312
- Mishra, N., Modak, S., Padhy, C., & Badavath, A. (2025). Factors influencing farming practices towards nutrition sensitive agriculture in southern Odisha. *Indian Journal of Extension Education*, 61(3), 86-91. https://doi.org/10.48165/IJEE.2025.61316
- Mondal, I., Bhandari, G., Sen, B., & Panja, A. (2022). Perception of urban consumers on dairy farming and milk consumption in north India. *Indian Journal of Extension Education*, 58(4), 139-143. https://doi.org/10.48165/
- Nagrale, B. G. (2015). An analysis of constraints faced by dairy farmers in Vidarbha region of Maharashtra. *Indian Journal of Dairy Science*, 68(4). https://epubs.icar.org.in/index.php/IJDS/article/ view/38636
- Pal, P. K., Bhutia, P. T., Das, L., Lepcha, N., & Nain, M. S. (2017). Livelihood diversity in family farming in selected hill areas of West Bengal, India. *Journal of Community Mobilization and Sustainable Development*, 12(2), 172-178.
- Patil, A. P., Chander, M., Verma, M. R., Kumar, S., Kumari, M., & Johnson, D. C. (2024). E-readiness evaluation and training needs assessment among goat bank pashusakhis in Maharashtra. *Indian Journal of Extension Education*, 60(1), 85-90. https://doi.org/10.48165/IJEE.2024.60116
- Press Information Bureau, GOI. (2025, May 31). World Milk Day 2025: Sip by Sip Building A Healthier Nation. https://www.pib.gov.in/ PressNoteDetails.aspx?NoteId=151889&ModuleId=3

- Sahoo, B., Saha, A., Dhakre, D. S., & Sahoo, S. L. (2022). Perceived constraints of organic turmeric farmers in Kandhamal district of Odisha. *Indian Journal of Extension Education*, 59(1), 107-111. https://doi.org/10.48165/
- Sahu, R. K., Kumar, B., Yadav, B., Kumar, K., & Singh, P. (2022). Assessment of IFS model in context of doubling farmers' income in district Banda: A micro study. *Economic Affairs*, 67(4), 445-451. doi:10.46852/0424-2513.4.2022.9
- Sahu, R. K., Kumar, B., Yadav, B., Rohit, & Kumar, A. (2021).
 Integrated farming system in district Banda: A micro analysis.
 International Journal Social Sciences, 10(4), 369-373.
- Saravanan, K. P., Silambarasan, P., Manivannan, A., Sasikala, V., & Sivakumar, T. (2021). Constraints and management practices of dairy farming during COVID-19 pandemic situation. Asian Journal of Dairy and Food Research, 40(1), 20-24.

- Singh, A., Maurya, A. S., Yadav, B., & Malik, J. S. (2024). Farmers' attitude towards organic farming in Uttar Pradesh. *Indian Journal of Extension Education*, 60(3), 33-36. https://doi.org/10.48165/IJEE.2024.60307
- Singh, D., Nain, M. S., Kour, P., Sharma, S., & Chahal, V. P. (2017).
 A study of empowerment level of tribal dairy farm women in J&K State. *Journal of Community Mobilization and Sustainable Development*, 12(1), 25-30.
- Singh, A. K., Gupta, J., Singh, M., & Patel, D. (2017). Constraints faced by the dairy farmers in adopting good farming practices in Uttar Pradesh. *International Journal of Agricultural Science*, 7(4), 123-130.
- Singrimbun, M., & Effendi, S. (1995). Metode Penelitian Survey. *Jakarta, LP3ES Cetakan*, 2. https://scholar.google.com/scholar?hl=en&as_sdt=0,5&cluster=5843267718676292947